If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+3-12m=0
a = 1; b = -12; c = +3;
Δ = b2-4ac
Δ = -122-4·1·3
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{33}}{2*1}=\frac{12-2\sqrt{33}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{33}}{2*1}=\frac{12+2\sqrt{33}}{2} $
| r-11=-21 | | 29-2(3-5w)=13 | | -4y+2=-2= | | 6x^2=5x=6 | | 3(2x-14)=-3(-13+x | | 3w-4=5w-2 | | 7x-2+2x=5(x+6) | | 8(4+x)+x=8+x | | 4x+3(x-2)=-10+5x | | 12/3+3x=4/5x+15 | | x=1+22 | | 3x+10+2x=2(x+10) | | 4x3(x-2)=-10+5x | | n=0.733(12)+8.398 | | (4x+70)+(9x-30)=180 | | 10x=2(3x+10) | | 4x=6.5 | | (n/6)-16=5 | | 5(x-2)+3x=20-2x | | 9x-10+5x=2(3x+7) | | 12.3+x=-7.5 | | 158=2-1/2x | | 3(x-2)+15=-12 | | |6x+12|=18 | | x/4+2=3-x/4 | | (j/3)+6=10 | | -14y+18=12 | | 3l+4+l=13l | | 8-7x=222 | | 35b–334=751 | | 2(3x+9)-2x=30-2x | | 2(3x+9)-2x=30-2 |